Densities of Aqueous Solutions of Sodium Bisulfite and Sodium 2-Methylallyl Sulfate

N. V. Choudary and R. V. Jasra*

Research Centre, Indian Petrochemicals Corporation Limited, Vadodara 391 346, India

Densities of aqueous solutions of sodium 2-methylallyl sulfate and sodium bisulfite have been measured at six temperatures in the range 283.15–303.15 K. The measured density values are represented by an empirical equation. The fitting of the experimental results for sodium 2-methylallyl sulfate is excellent, whereas in the case of sodium bisulfite the fitted data are in reasonably good agreement with the experimental values.

Introduction

In commercial processes acrylic fiber is manufactured by suspension polymerization with water as the suspension medium in the presence of a redox catalyst. In the catalyst preparation, aqueous solutions of sodium nitrite, potassium cyanate, sodium bisulfite, and sulfuric acid are used. In these processes, sodium 2-methylallyl sulfate is used as a comonomer to enhance the dyeability of the fiber. Catalyst batch preparation requires frequent monitoring of concentrations of aqueous solutions of these compounds. One of the simplest ways of obtaining the concentration of a solution is to measure the density of the solution. The density of aqueous solutions of sulfuric acid (1-3), sodium nitrite (1, 4), and potassium cyanate (1) are available in the published literature. However, no published literature values are available for densities of aqueous solutions of sodium 2-methylallyl sulfate and sodium bisulfite. In the present paper, we report densities of aqueous solutions of sodium 2-methylallyl sulfate and sodium bisulfite

as a function of concentration and temperature from 283.15 to 313.15 K.

Experimental Section

Densities are measured with an Anton Paar digital density meter, model DMA 602H. The density determination is based on measuring the time period of oscillation of a vibrating U-shaped glass sample tube which is filled with the sample liquid. The following relationship exists between the time period of vibration of the glass tube and the density of the solution filled in the vibrating tube:

$$\rho = A(t^2 - B) \tag{1}$$

where t is the time period and A and B are instrument constants which are determined by calibration with fluids of precisely known densities, viz., water and air. The density values obtained in the present study were accurate to ± 0.01 kg·m⁻³.

Table 1.	Density, a. of Sodium 2-Met	hvlallvl Sulfate at 283.75.	. 288.15, 293.15, 298.15, 303.15, and 313.15 K
A WOLD 11	204010,, p, 01 2041414 2 1100	= = = = = = = = = = = = = = = =	, =conc, =conc, =conc, coonc, and crone

	$ ho/(kg\cdot m^{-3})$			$ ho/(kg\cdot m^{-3})$	
$c/(\text{mol}\cdot\text{kg}^{-1})$	T = 283.75 K	T = 288.15 K	$c/(\text{mol}\cdot kg^{-1})$	T = 283.75 K	T = 288.15 K
0.0078	1000.172	999.617	0.9193	1054.374	1053,242
0.0345	1001.932	1001.362	0.9520	1056.170	1055.062
0.0643	1003.888	1003.427	0.9713	1057.185	1055.976
0.2983	1018.604	1017.922	1.0061	1058.977	1057.896
0.6331	1038.188	1037.401	1.1288	1065.663	1064.349
0.7528	1045.089	1044.169	1.2633	1072.791	1071.394
0.8803	1052.193	1051.151			
	 ρ/(kg·m ⁻³)			ρ/(kg·m ⁻³)	
$c/(\text{mol}\cdot\text{kg}^{-1})$	T = 293.15 K	T = 298.15 K	$c/(\text{mol}\cdot kg^{-1})$	T = 293.15 K	<i>T</i> = 298.15 K
0.0065	998.658	997.453	0.8803	1049.569	
0.0302	1000.175	998.963	0.9163	1051.476	1049.497
0.0643	1002.347	1001.107	0.9538	1053.393	1051.427
0.2983	1016.809		0.9787	1054.756	1052.698
0.3209		1016.321	1.0080	1056.290 105	
0.6283	1035.851	1033.839	1.1331	1062.660	1060.988
0.7574	1042.964	1040.787	1.2902	1070.519	1069.135
	ρ/(k	g•m ⁻³)		ρ/(kg	g•m ^{−3})
c/(mol·kg ⁻¹)	T = 303.15 K	T = 313.15 K	$c/(\text{mol}\cdot\text{kg}^{-1})$	T = 303.15 K	T = 313.15 K
0.0078	996.157	992.720	0.9193	1047.886	1043.809
0.0345	997.846	994.376	0.9520	1049.663	1045.493
0.0643	999.705	996.193	0.9713	1050.639	1046.431
0.2983	1013.750	1010.038	1.0061	1052.387	1048.278
0.6331	1032.618	1028.715	1.1288	1058.746	1054.541
0.7528	1039.141	1035.069	1.2633	1065.555	1061.205
0.8803	1045.874	1041.820			

Table	2. Der	ısity, ρ, o	f Sodium	Bisulfite	at 293.3	75, 288.15,
293.15	, 298.15,	303.15, a	nd 313.15	K		

	$\rho/(\text{kg}\cdot\text{m}^{-3})$				
$c/(\text{mol}\cdot\text{kg}^{-1})$	T = 283.15 K	T = 288.15 K	<i>T</i> = 293.15 K		
0.0099	1000.802	1000.129	999.154		
0.0483	1003.981	1003.297	1002.144		
0.0985	1008.214	1007.315	1006.269		
0.1179	1009.338	1008.553	1007.493		
0.4536	1034.275	1033.229	1032.164		
0.8981	1068.218	1066.456	1064.980		
1.3988	1105.329	1102.998	1099.893		
1.9151	1136.683	1134.862	1132.093		
2.1883	1152.982	1150.374	1147.724		
2.4717	1168.626	1166.720	1164.472		
2.5478	1173.825	1171.504	1168.685		
2.6895	1182.093	1179.693	1177.580		
2.7636	1186.924	1184.467	1182.070		
2.8919	1195.432	1192.322	1190.227		
2.9155	1196.573	1193.965	1191.757		
3.0844	1209.897	1205.794	1203.555		
		$ ho/({ m kg}{ m m}^{-3})$			
c/(mol·kg ⁻¹)	<i>T</i> = 298.15 K	$\rho/(\text{kg-m}^{-3})$ T = 303.15 K	<i>T</i> = 313.15 K		
c/(mol·kg ⁻¹)	T = 298.15 K 997.818	$\rho/(\text{kg}\cdot\text{m}^{-3})$ T = 303.15 K 996.786	T = 313.15 K 993.307		
c/(mol·kg ⁻¹) 0.0099 0.0483	T = 298.15 K 997.818 1000.867	$\frac{\rho/(\text{kg}\cdot\text{m}^{-3})}{T = 303.15 \text{ K}}$ 996.786 998.143	<i>T</i> = 313.15 K 993.307 996.402		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985	T = 298.15 K 997.818 1000.867 1004.655	$\frac{\rho/(\text{kg-m}^{-3})}{T = 303.15 \text{ K}}$ 996.786 998.143 1003.617	<i>T</i> = 313.15 K 993.307 996.402		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179	T = 298.15 K 997.818 1000.867 1004.655 1006.084	$\rho/(\text{kg-m}^{-3})$ $T = 303.15 \text{ K}$ 996.786 998.143 1003.617 1004.903	<i>T</i> = 313.15 K 993.307 996.402 1003.564		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536	T = 298.15 K 997.818 1000.867 1004.655 1006.084 1031.084	$\frac{\rho/(\text{kg}\cdot\text{m}^{-3})}{T = 303.15 \text{ K}}$ 996.786 998.143 1003.617 1004.903 1031.483	T = 313.15 K 993.307 996.402 1003.564 1028.076		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536 0.8981	T = 298.15 K 997.818 1000.867 1004.655 1006.084 1031.084 1062.635	$\frac{\rho/(\text{kg}\cdot\text{m}^{-3})}{T = 303.15 \text{ K}}$ 996.786 998.143 1003.617 1004.903 1031.483 1063.736	T = 313.15 K 993.307 996.402 1003.564 1028.076 1059.745		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536 0.8981 1.3988	T = 298.15 K 997.818 1000.867 1004.655 1006.084 1031.084 1062.635 1096.236	$\rho/(\text{kg·m}^{-3})$ $T = 303.15 \text{ K}$ 996.786 998.143 1003.617 1004.903 1031.483 1063.736	T = 313.15 K 993.307 996.402 1003.564 1028.076 1059.745		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536 0.8981 1.3988 1.9151	T = 298.15 K 997.818 1000.867 1004.655 1006.084 1031.084 1062.635 1096.236 1129.815	$\rho/(\text{kg·m}^{-3})$ $T = 303.15 \text{ K}$ 996.786 998.143 1003.617 1004.903 1031.483 1063.736 1127.921	T = 313.15 K 993.307 996.402 1003.564 1028.076 1059.745 1123.935		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536 0.8981 1.3988 1.9151 2.1883	T = 298.15 K 997.818 1000.867 1004.655 1006.084 1031.084 1062.635 1096.236 1129.815 1145.639	$\rho/(\text{kg}\cdot\text{m}^{-3})$ $T = 303.15 \text{ K}$ 996.786 998.143 1003.617 1004.903 1031.483 1063.736 1127.921 1143.596	T = 313.15 K 993.307 996.402 1003.564 1028.076 1059.745 1123.935		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536 0.8981 1.3988 1.9151 2.1883 2.4717	T = 298.15 K 997.818 1000.867 1004.655 1006.084 1031.084 1062.635 1096.236 1129.815 1145.639 1163.119	$\rho/(\text{kg-m}^{-3})$ $T = 303.15 \text{ K}$ 996.786 998.143 1003.617 1004.903 1031.483 1063.736 1127.921 1143.596 1159.090	T = 313.15 K 993.307 996.402 1003.564 1028.076 1059.745 1123.935 1153.810		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536 0.8981 1.3988 1.9151 2.1883 2.4717 2.5478	T = 298.15 K 997.818 1000.867 1004.655 1006.084 1031.084 1062.635 1096.236 1129.815 1145.639 1163.119 1167.487	$\rho/(\text{kg-m}^{-3})$ $T = 303.15 \text{ K}$ 996.786 998.143 1003.617 1004.903 1031.483 1063.736 1127.921 1143.596 1159.090 1163.112	T = 313.15 K 993.307 996.402 1003.564 1028.076 1059.745 1123.935 1153.810 1157.427		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536 0.8981 1.3988 1.9151 2.1883 2.4717 2.5478 2.6895	T = 298.15 K 997.818 1000.867 1004.655 1006.084 1031.084 1062.635 1096.236 1129.815 1145.639 1163.119 1167.487 1175.799	$\rho/(\text{kg-m}^{-3})$ $T = 303.15 \text{ K}$ 996.786 998.143 1003.617 1004.903 1031.483 1063.736 1127.921 1143.596 1159.090 1163.112 1171.112	T = 313.15 K 993.307 996.402 1003.564 1028.076 1059.745 1123.935 1153.810 1157.427 1164.676		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536 0.8981 1.3988 1.9151 2.1883 2.4717 2.5478 2.6895 2.7636	$\overline{T} = 298.15 \text{ K}$ 997.818 1000.867 1004.655 1006.084 1031.084 1062.635 1096.236 1129.815 1145.639 1163.119 1167.487 1175.799 1179.925	$\begin{array}{c} \rho/(\mathrm{kg}\cdot\mathrm{m}^{-3})\\ \hline T=303.15~\mathrm{K}\\ 996.786\\ 998.143\\ 1003.617\\ 1004.903\\ 1031.483\\ 1063.736\\ \hline 1127.921\\ 1143.596\\ 1159.090\\ 1163.112\\ 1171.112\\ 1175.313\\ \end{array}$	T = 313.15 K 993.307 996.402 1003.564 1028.076 1059.745 1123.935 1153.810 1157.427 1164.676 1167.278		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536 0.8981 1.3988 1.9151 2.1883 2.4717 2.5478 2.6895 2.7636 2.8919	T = 298.15 K 997.818 1000.867 1004.655 1006.084 1031.084 1062.635 1096.236 1129.815 1145.639 1163.119 1167.487 1175.799 1179.925 1187.104	$\begin{array}{c} \rho/(\text{kg-m}^{-3})\\ \hline T=303.15 \text{ K}\\ 996.786\\ 998.143\\ 1003.617\\ 1004.903\\ 1031.483\\ 1063.736\\ \hline 1127.921\\ 1143.596\\ 1159.090\\ 1163.112\\ 1171.112\\ 1175.313\\ 1181.469\\ \hline \end{array}$	T = 313.15 K 993.307 996.402 1003.564 1028.076 1059.745 1123.935 1153.810 1157.427 1164.676 1167.278 1172.282		
c/(mol·kg ⁻¹) 0.0099 0.0483 0.0985 0.1179 0.4536 0.8981 1.3988 1.9151 2.1883 2.4717 2.5478 2.6895 2.7636 2.8919 2.9155	T = 298.15 K 997.818 1000.867 1004.655 1006.084 1031.084 1062.635 1096.236 1129.815 1145.639 1163.119 1167.487 1175.799 1179.925 1187.104 1188.344	$\rho/(\text{kg·m}^{-3})$ $T = 303.15 \text{ K}$ 996.786 998.143 1003.617 1004.903 1031.483 1063.736 1127.921 1143.596 1159.090 1163.112 1171.112 1175.313 1181.469 1182.547	T = 313.15 K 993.307 996.402 1003.564 1028.076 1059.745 1123.935 1153.810 1157.427 1164.676 1167.278 1172.282 1173.601		

Table 3. Standard Deviation σ (ρ) and Values of Constants in Equation 2 for Sodium 2-Methylalyl Sulfate at Various Temperatures

T/K	A_2	A_3	A_4	A_5	A_6	$\sigma(ho)/({\rm kg}\cdot{\rm m}^{-3})$
283.75	68.341	-9.012	-0.237			0.05
288.15	65.034	20.083	-75.372	74.062	-25.299	0.07
293.15	68.537	-10.953				0.06
298.15	64.355	-7.468				0.06
303.15	66.063	-10.560	0.984			0.03
313.15	64.418	-8.663				0.04

The temperature of the measuring cell was maintained within ± 0.001 K with the help of a circulating thermostat whose temperature was controlled by an M/S TRONIC precision temperature controller, model PTC-41.

Sodium 2-methylallyl sulfate and sodium bisulfate were Analar grade and were used without further purification. Sodium 2-methylallyl sulfate contained 200 ppm each Cland sodium sulfite as impurities. On the other hand sodium bisulfite contained 10 ppm Cl- and 15 ppm Fe³⁺ as impurities. Aqueous solutions of various known concentrations were prepared by mass using triple-distilled water. Solutions of low concentrations were prepared by successive dilutions.

Figure 1. Deviation of the estimated density (from eq 2) from the experimental density plotted as a function of the square root of concentration for sodium 2-methylallyl sulfate.

Figure 2. Deviation of the estimated density (from eq 2) from the experimental density plotted as a function of the square root of concentration for sodium bisulfite.

Results and Discussion

Experimental density values for sodium 2-methylallyl sulfate and sodium bisulfite measured at 283.15, 288.15, 293.15, 298.15, 303.15, and 313.15 K are given in Tables 1 and 2. The values of density may be expressed by an empirical equation of the form given below:

$$\rho_T / (\text{kg·m}^{-3}) = \rho_W / (\text{kg·m}^{-3}) + \sum_{i=2}^n A_i (c/(\text{mol·kg}^{-1}))^{i/2} \quad (2)$$

where ρ_T is the density of the solution at temperature T, ρ_W is the density of water, c is the concentration of the solution (mol·kg⁻¹), and A_i are adjustable parameters. The values of adjustable parameters obtained by least-squares regression along with the standard deviation $\sigma(\rho)$ calculated using eq 3,

$$\sigma(\rho) = \left[\frac{\left(\rho_{\text{calcd}} - \rho_{\text{exptl}}\right)^2}{(n-p)}\right]^{1/2}$$
(3)

where n is the number of data and p is the number of adjustable parameters, are given in Tables 3 and 4. The

Table 4. Standard Deviation $\sigma(\rho)$ and Vlaues of Constants in Equation 2 for Sodium Bisulfite at Various Temperatures

T/K	A_2	A ₃	A ₄	A_5	A_6	A ₇	$\sigma(ho)/({ m kg}\cdot{ m m}^{-3})$
283.15	1.226	111.890	-170.777	276.037	-184.613	42.463	0.324
288.15	0.560	111.739	-167.838	267.297	-176.678	40.188	0.248
293.15	0.454	99.581	-112.779	182.207	-124.243	28.990	0.147
298.15	0.155	78.125	-3.359	-2.342			0.206
303.15	7.910	22.761	147.078	-167.222	78.415	-13.787	0.169
313.15	5.524	46.510	93.865	-125.931	69.373	-14.818	0.352

deviation of the estimated density from the experimental density for both the components is plotted in Figures 1 and 2. As can be seen from these figures the fitting is excellent in the case of sodium 2-methylallyl sulfate. The deviation was less than ± 0.1 kg·m⁻³. However, in the case of sodium bisulfite the deviation for most of the data points was within ± 0.2 kg·m⁻³ with a maximum deviation of ± 0.53 kg·m⁻³

Acknowledgment

We acknowledge the experimental assistance of Mr. R. D. Parte. We are thankful to Dr. S. G. T. Bhat for his keen interest and useful discussions and Dr. I.S. Bhardwaj, Director (R&D), for his encouragement. We are also thankful to Indian Petrochemicals Corp. Ltd., Vadodara, for permission to publish this work.

Literature Cited

- (1) International critical tables; McGraw-Hill: New York, 1928; Vol. III.
- (2)
- (3)
- III.
 D'Ans/Lax. Taschenbuch fur chemiker und physiker; Springer: Berlin, 1967; Band I.
 Donke, J.; Bein, W. Z. Z. Anorg. Chem. 1905, 43, 125.
 Timmermann, J. Physico-chemical constants of binary systems in concentrated solutions; Interscience: New York, 1960; Vols. 3 and (4) 4.

Received for review October 1, 1993. Accepted October 25, 1993.

• Abstract published in Advance ACS Abstracts, December 1, 1993.